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Abstract
We consider general quantum random walks in a d-dimensional half-space.
We first obtain a path integral formula for general quantum random walks in a
d-dimensional space. Our path integral formula is valid for general quantum
random walks on Cayley graphs as well. Then the path integral formula is
applied to obtain the scaling limit of the exit distribution, the expectation of
exit time and the asymptotic behaviour of the exit probabilities, for general
quantum random walks in a half-space under some conditions on amplitude
functions. The conditions are shown to be satisfied by both the Hadamard
and Grover quantum random walks in two-dimensional half-spaces. For the
two-dimensional case, we show that the critical exponent for the scaling limit
of the hitting distribution is 1 as the lattice spacing tends to zero, i.e. the
natural magnitude of the hitting position is of order O(1) if the lattice spacing
is set to be 1/n. We also show that the rate of convergence of the total
hitting probability has lower bound n−2 and upper bound n−2+ε for any ε > 0.
For a quantum random walk with a fixed starting point, we show that the
probability of hitting times at the hyperplane decays faster than that of the
classical random walk. In both one and two dimensions, given the event of a
hit, the conditional expectation of hitting times is finite, in contrast to being
infinite for the classical case. In the one-dimensional case, we also obtain an
exact order of the probability distribution of the hitting time at 0.

PACS numbers: 02.50.Cw, 03.67.Lx, 05.40.Fb

1. Introduction

Discrete time quantum random walks were first used by Feynman in [10] for discretizing
the Dirac equation. The term ‘quantum random walks’ was first given by Aharonov et al
in [2]. Motivated by quantum information and quantum computing, quantum random walks
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were again studied by Meyer in [22, 23]. Recently, Aharonov et al [1] studied quantum
random walks on general graphs with rigorous proofs. In [3], Ambainis et al also gave a
detailed study of quantum random walks on a line with rigorous proofs. Subsequently, several
rigorous results for quantum random walks on either d-dimensional whole lattice spaces or
one-dimensional half-spaces were obtained [4, 6, 13, 19–21]. We refer to Kempe [16] for an
excellent overview.

For the mathematical results obtained so far, the most commonly used techniques are
diagonalization of the shift operator, path integrals, combinatorial methods and the Fourier
transform. Diagonalization of the shift operator is limited to the situation where it can be
diagonalized, e.g., quantum random walks on the whole space Zd . So far the path integral
has been formulated in a combinatorial form which is particularly simple for applications to
one-dimensional quantum random walks.

In this paper, we consider general quantum random walks in a d-dimensional half-space.
We first obtain a path integral formula for the case of d-dimensional general quantum random
walks (proposition 1.1). Under some conditions on amplitude functions (A.1)–(A.6) in
section 1.3, we then apply the path integral formula to obtain a scaling limit of the exit
distribution, the expectation of exit time and the asymptotic behaviour of the exit probabilities,
for general quantum random walks in a half-space (theorems 1.1–1.4). The conditions
are shown to be satisfied by both Hadamard and Grover’s quantum random walks in two-
dimensional half-spaces (theorem 1.5). Our path integral formula works for general quantum
random walks on Cayley graphs as well. Using the same method, we also prove an asymptotic
property for the absorbing probability for the one-dimensional Hadamard quantum random
walk on half-line (theorem 1.6). It is well known that the expectation of the hitting time at 0
is infinite for the one-dimensional classical random walk starting at position n > 0. For the
quantum case, we show that the corresponding probability distribution of the hitting time at 0
decays faster than the classical case and if it hits, the conditional expectation of hitting time is
finite.

1.1. Notations and definitions

In this paper, we consider quantum random walks on a d-dimensional half-space. We shall
start with the definition of quantum random walks in a d-dimensional space. Let Zd be a
d-dimensional integer lattice. For a d-dimensional quantum random walk, the position Hilbert
space is the Hilbert space Hp spanned by an orthonormal basis {|x〉, x ∈ Zd}. The coin Hilbert
space Hc is spanned by an orthonormal basis {|j 〉, j = 1, 2, . . . , 2d.}. The state space is
defined by H = Hp ⊗ Hc.

The evolution of the quantum random walk is defined as follows. Let e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 0, 1) be the standard orthonormal
basis for Zd , and ed+j = −ej , for j = 1, 2, . . . , d. The shift operator S : H → H is defined
by

S(|x〉 ⊗ |j 〉) = |x + ej 〉 ⊗ |j 〉,

for all j . The coin operator A : Hc → Hc is a unitary operator. Then the evolution operator for
the quantum random walk is defined by U = S(I ⊗ A), where I denotes the identity operator
on Hp.

Let ψ0 ∈ H and ψt = Utψ0. The sequence {ψt }∞0 is called a d-dimensional quantum
random walk with the initial state ψ0. In this paper, we will mainly consider Hadamard walks
and Grover’s walks defined as follows.
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The one-dimensional Hadamard walk is the quantum random walk on Z1 with A = H2,
where H2 is the 2 × 2 Hadamard matrix

H2 = 1√
2

(
1 1
1 −1

)
.

The two-dimensional Hadamard walk is the quantum random walk on Z2 with

A = H2 ⊗ H2 = 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Grover’s walk in two dimensions is the quantum random walk on Z2 with

A = 1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

The measurements for a quantum random walk are defined as follows. Let �
j
x be the

orthogonal projection operator of H onto the linear span of |x〉 ⊗ |j 〉 and �x the orthogonal
projection of H onto the linear span of {|x〉 ⊗ |j 〉; j = 1, 2, . . . , 2d}. The position operators
X = (X1, . . . , Xd) are unbounded linear operators on H such that

Xi(|x〉 ⊗ |j 〉) = xi |x〉 ⊗ |j 〉,
for all x ∈ Zd, j = 1, 2, . . . , 2d and i = 1, 2, . . . , d.

Let ψt = ∑2d
j=1

∑
x∈Zd ψt (x, j)|x〉 ⊗ |j 〉 be the quantum random walk at time t,

where ψt(x, j) is the coefficient at |x〉 ⊗ |j 〉. Let pt(x, j) = 〈
ψt,�

j
xψt

〉 = |ψt(x, j)|2
be the probability that the particle is found at state |x〉 ⊗ |j 〉 at time t, and pt(x) =
pt(x, 1) + pt(x, 2) + · · · + pt(x, 2d) be the probability that the particle is found at state
|x〉 at time t.

Computer simulations show that the probability distribution of a 1D Hadamard walk at
time t = 100 with the initial state ψ0 = |0〉 ⊗ |2〉 has a leftward drift, see e.g., [16]. So
the quantum random walk is asymmetric with respect to the initial state ψ0 = |0〉 ⊗ |j 〉
with j = 1 (right) and 2 (left). Unlike the classical random walk with a Gaussian character,
it is bimodal and spread out through the whole interval [−100, 100]. It spreads out faster
than the classical random walk. The variance for the classical random walk is σ 2(t) = t ,
while σ 2(t) = t2 is expected for the quantum random walk. For a symmetrized initial state
ψ0 = |0〉 ⊗ 1√

2
(|1〉 + |2〉), the distribution at time t = 100 is symmetric with respect to 0. It is

also bimodal and spread out through the whole interval [−100, 100].
In [3], Ambainis et al obtained the results (a)–(d). Suppose that the initial state is

ψ0 = |0〉 ⊗ |1〉.
(a) Let x = αt → ∞ with α fixed. Suppose −1 < α < −1√

2
or 1√

2
< α < 1. Then there

is a c > 1 for which pt(x, j) = O(c−x), for all j .
(b) Let ε > 0 be any constant. Suppose α is in the interval

(−1√
2

+ ε, 1√
2

− ε
)
. Then as

t → ∞, we have (uniformly in x)

pt(x, 1) ∼ 2(1 + α)

π(1 − α)
√

1 − 2α2t
cos2

(
−ωt +

π

4

)
,

pt (x, 2) ∼ 2

π
√

1 − 2α2t
cos2

(
−ωt +

π

4
− ρ

)
,
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where ω = αρ + θ, ρ = arg(−B +
√


), θ = arg(−B + 2 +
√


),B = 2α
1−α

and

 = B2 − 4(B + 1).

For a Markov chain, the mixing time is defined by

τε = max
u

min
t

{t; ‖pu(., t
′) − π‖ � ε, ∀t ′ � t},

where pu(., t
′) is the distribution of the Markov chain at time t ′ with the initial condition u,

and π is the limiting distribution.
For a quantum random walk, due to a periodic character, the limiting distribution does

not exist. So the mixing time is defined as

τε = max
u

min
t

{t; ‖pu(., t) − π‖ � ε},
where pu(., t) is the distribution of the quantum random walk at time t with the initial condition
u, and π is a target distribution.

The results (a) and (b) suggest that τε = �
(

1
ε

)
, for a one-dimensional quantum random

walk where π is the uniform distribution. For a one-dimensional classical random walk,
τε = �

(
1
ε2

)
.

In [3], a 1D Hadamard walk on half-space [0,∞), called a semi-infinite walk, is defined
as follows.

Step 1. Let the initial state be |1〉 ⊗ |1〉.
Step 2. Apply U and then apply the measurement {�0, 1 − �0}.
Step 3. If the result of the measurement is 0, then terminate the process; otherwise repeat
step 2.

(c) Let p∞ be the probability that the process is eventually terminated. Then

p∞ = 2

π
= 0.6366.

It is well known that p∞ = 1, for a one-dimensional classical random walk.
One-dimensional Hadamard walk on a finite interval [0, n], n > 1, is also considered in

[3]. It is defined by the following.

Step 1. Let the initial state be |1〉 ⊗ |1〉.
Step 2. Apply U, apply the measurement {�0, 1 − �0} and then apply the measurement
{�n, 1 − �n}.
Step 3. If the result of either measurement is either 0 or n, then terminate the process; otherwise
repeat step 2.

(d) Let pn be the probability that a quantum random walk on [0, n] is eventually terminated
at 0. Then,

lim
n→∞ pn = 1√

2
= 0.7071.

Since 1√
2

> 2
π
, limn→∞ pn > p∞. This is interesting because for classical random walks,

pn � p∞, for all n > 0.
For the problem of the scaling limit of a quantum random walk, we consider the position

operator at time t, Xt = U ∗tXUt . Grimmett et al [12] obtained the weak scaling limit of 1
t
Xt

as t → ∞. Konno [19, 20] also obtained the scaling limit, but with a different description of
the distribution.

The method used in [13] is to diagonalize the shift operator S in the Fourier space. Then
the asymptotic behaviour of moments can be easily determined. The proofs of (a) and (b) in [3]
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also depend on the diagonalization of S in Fourier space. Diagonalization of S in Fourier space
does not work for a quantum random walk in a restricted space, for example, a half-space.
The proofs of (c) and (d) in [3] depend on a path integral formula in terms of combinatorics
which is special for one-dimensional Hadamard walks. This special combinatorial form of
path integral does not work for general quantum random walks. Since we consider quantum
random walks in dimensions >1 and in half-spaces, we will develop a form of path integral
for general quantum random walks in the following subsection.

1.2. The path integral

Our formulation of path integral is described as follows. A path w is defined by
w = (w0, w1, . . . , wn), where wi ∈ Zd , and |wi − wi−1| = 1. The length of w is defined by
|w| = n. Let eji

= wi−wi−1 be the increment at the ith step of w. Then w = (w0, w1, . . . , wn)

can be 1-1 identified with
(
w0; ej1 , . . . , ejn

)
. Let �n = {w; |w| = n}.

Definition 1.1. (Amplitude function) For 1 � i, j � 2d, x ∈ Zd , the amplitude function is
defined for w ∈ �n,



i,x
j (w) = δj (jn)ajnjn−1ajn−1jn−2 . . . aj1i , (1.1)

here wi − wi−1 = eji
and w0 = x; otherwise 


i,x
j (w) = 0. Here δj (k) = 0 if k �= j and

δj (k) = 1 if k = j .

Let B be the transpose of A. Then we have



i,x
j (w) = bij1bj1j2 . . . bjn−1jn

δj (jn). (1.2)

Definition 1.2. Let � ⊆ �n. The amplitude of � is defined by



i,x
j (�) =

∑
w∈�



i,x
j (w). (1.3)

Let � = ∪∞
n=0�

n. For � ⊆ � with �n = � ∩ �n, we also define



i,x
j (�) =

∞∑
n=0



i,x
j (�n), (1.4)

and 
i,x(�) = ∑
j 


i,x
j (�).

For any ψ ∈ H , we shall write ψ = ∑2d
i=1

∑
x∈Zd ψ(x, i)|x〉|i〉. We have the following

proposition.

Proposition 1.1. (a) Suppose ψt = Ut |x〉|i〉, then

ψt(y, j) = 
ix
j (ωt = y),

for all y ∈ Zd, j = 1, . . . , 2d.

(b) Suppose ψt = Utψ0. Then for any ψ0 ∈ H , we have

ψt(y, j) =
∑

i

∑
x

ψ0(x, i)
ix
j (ωt = y).

Remark 1.1. Proposition 1.1. unifies the path integrals for quantum random walks and
classical random walks, if a non-unitary A is allowed. Indeed, if we let aij = 1/2d, for all
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i, j , then for the d-dimensional classical simple random walk, (Xt)
∞
t=0, on Zd , the conditional

probability

P(Xt = y|X0 = x) = 
ix(ωt = y),

for all y ∈ Zd , and any i = 1, . . . , 2d.

Remark 1.2. The above proposition works for general quantum random walks on Cayley
graph as well. Let G be a group with group operation. Let E be a set of generators of G
such that the identity x0 /∈ E. Let (G,E) be the Cayley graph associated with G and E. The
position Hilbert space is Hp spanned by an orthonormal basis {|x〉, x ∈ G}. The coin Hilbert
space Hc is spanned by an orthonormal basis {|j 〉, ej ∈ E}. The state space is H = Hp ⊗ Hc.

The shift operator S : H → H is

S(|x〉 ⊗ |j 〉) = |x · ej 〉 ⊗ |j 〉,
for all j . The coin operator A : Hc → Hc is any unitary operator. The evolution operator for
the quantum random walk on (G,E) is defined by U = S(I ⊗A), where I denotes the identity
operator on Hp. Let ψ0 ∈ H and ψt = Utψ0. The sequence {ψt }∞0 is called a quantum
random walk on (G,E) with the initial state ψ0. Then proposition 1.1 holds for quantum
random walks on (G,E)

1.3. Quantum random walks in half-spaces

Now we apply the path integral to quantum random walks in half-spaces. The following
method works for any d, but for convenience of presentation, we will consider d = 2 only.

Let D = {(x, y) ∈ Z2, x � 0} be the left half-space. Let τ = τ(w) = inf{t > 0;wt ∈ D}
be the first hitting time of D by w.

The amplitude Green function for the quantum random walk in the right half-space with
zero boundary conditions is defined by

f
i,n
j (y) = f

i,n
j (y, z) =

∞∑
t=1


in
j (wt = (0, y), τ = t)zt .

Here i is the initial type, j is the ending type, n is the initial position in the x-axis, y is the
ending position in the y-axis and z is a complex number. We note that 
in

j (wt = (0, y), τ = t)

is in L2(y, t) (see (1.12) and (1.13)). Therefore, the Green function is absolutely convergent
for |z| < 1. It exists in the sense of L2(θ), for z = eiθ and satisfies∥∥
in

j (wt = (0, y), τ = t)
∥∥2

L2(t)
= 1

2π

∫ 2π

0
dθf

i,n
j (y, eiθ )f

i,n
j (y, e−iθ ). (1.5)

Similarly, let

f
i,n
j (k, z) =

∑
y

eikyf
i,n
j (y, z), 0 � k � 2π,

and

f
i,n
j (k, t) =

∑
y

eiky
in
j (wt = (0, y), τ = t), 0 � k � 2π,

be the Fourier transforms (throughout this paper, we use f
i,n
j (k, z) instead of f̂

i,n
j (k, z); the

Fourier transform is understood by the variables). Then

1

2π

∫ 2π

0
dθ

1

2π

∫ 2π

0

∣∣f i,n
j (k, eiθ )

∣∣2dk = ∥∥
in
j (wt = (0, y), τ = t)

∥∥2
L2(y,t)

< ∞.
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Therefore, for a.e. k,

1

2π

∫ 2π

0
dθ
∣∣f i,n

j (k, eiθ )
∣∣2 < ∞.

This implies
∑

t

∣∣f i,n
j (k, t)

∣∣2 < ∞ and f
i,n
j (k, z) is analytic in |z| < 1, for a.e. k, and

f
i,n
j (k, r eiθ ) → f

i,n
j (k, eiθ ) in L2(θ), as r ↑ 1.

In particular, we put f i
j = f

i,0
j . Let F be a 4 × 4 matrix with entries Fij = f i

j (k, z). We
also let Ã denote the matrix obtained from A by interchanging the first and the third columns.
We obtain the following proposition.

Proposition 1.2. For each fixed k, there exists δ > 0 such that for all |z| < δ, the Green
functions satisfy

F = zÃ


0 0 0 0
0 eik 0 0
0 0 ([1 − F ]−1zA)13 0
0 0 0 e−ik

 . (1.6)

To simplify notation, we put

([1 − F ]−1zA)13 = g(k, z) for |z| < δ. (1.7)

For the related Green functions with other initial positions, we note that for n �
1, f

i,n
j (y) = 0, for all j �= 3. For j = 3, we have

f
i,1
3 (k, z) = ([1 − F ]−1zA)i3 for |z| < δ. (1.8)

In particular,

f
1,1
3 (k, z) = ([1 − F ]−1zA)13 = g for |z| < δ. (1.9)

f 1
3 (k, z) = za11f

1,1
3 (k, z) = za11g for |z| < δ. (1.10)

We also obtain

Corollary 1.1. For n � 1, |z| < δ,

(a) f
i,n
3 (k) = f

i,1
3 (k)

(
f

3,1
3 (k)

)n−1
.

(b) f
3,n
3 (k) = (

f
3,1
3 (k)

)n
and f

3,1
3 (k) = ([1 − F ]−1zA)33.

We will obtain results for general quantum random walks in two dimensions under the
following conditions. We will show in theorem 1.5 that all the conditions (A.1–A.6) are
satisfied for both Hadamard walk and Grover’s walk in two dimensions.

A.1. Equation (1.6) has a solution hi
j (k, z) such that for every k, hi

j (k, z) is analytic in |z| < 1,
relatively continuous in |z| � 1 and equal to f i

j (k, z) for |z| < δ.

A.2. For every k, f 31
3 (k, z) is analytic in the unit disc |z| < 1 and continuous in the

closed unit ball |z| � 1. Moreover,
∣∣f 31

3 (k, eiθ )
∣∣ � 1, a.e. k, θ ∈ [0, 2π ], and the set

L = {k, θ ∈ [0, 2π ]; |f 31
3 (k, eiθ )| = 1} has a positive Lebesgue measure.

A.3. For every fixed θ , there exists a set Dθ = [0, 2π ]\{k1(θ), k2(θ), . . . , kl(θ)} such that the
partial derivative ∂kf

31
3 (k, e−iθ ) exists and is continuous in Dθ .
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A.4. For every k, there exists a set Dk = [0, 2π ]\{θ1(k), θ2(k), . . . , θm(k)} such that the
partial derivative ∂rf

31
3 (k, r e−iθ ) exists and is continuous in 0 < r < 1, θ ∈ Dk . Moreover

there exists a constant C, independent of k, θ, r such that∣∣∂rf
31
3 (k, r eiθ )

∣∣ � C

m∑
i=1

1√|θ − θi |
,

for all k ∈ [0, 2π ], r0 < r < 1, for some 0 < r0 < 1, and all θ ∈ Dk .

A.5. There exist 0 � ξ1 < ξ2 < · · · < ξt � 2π , such that for every ξi < θ < ξi+1, L
c

is a finite union of open intervals, ∪j Ij , with disjoint closures. Let Ij = (aj , bj ). Let

cj = aj +bj

2 . For all sufficiently small positive constant ε,Oij = {ξi < θ < ξi+1; aj + ε < cj }
and O ′

ij = {ξi < θ < ξi+1; bj − ε > cj } have positive Lebesgue measures. Moreover,

1 − ∣∣f 31
3 (k, eiθ )

∣∣2 � C
√|k − aj |,

for all ξi < θ < ξi+1, and aj < k < cj ; here C is a universal positive constant. The same
asymptotic behaviour also holds for the other end of the interval, i.e.

1 − ∣∣f 31
3 (k, eiθ )

∣∣2 � C
√|k − bj |,

for all ξi < θ < ξi+1, and bj > k > cj .

A.6. For a fixed k, let θ1 = θ1(k) such that ξi < θ1 < ξi+1 and (θ1, k) is on the
boundary of L. For η > 0, let �1 = {ξi < θ < ξi+1 − −η, aj < k < cj } and �2 =
{ξi+1 − 2η < θ < ξi+1, aj < k < cj }. There exist positive constants η and C such that either
both of the following inequalities hold:

C
√

|θ − ξi |
√|k − aj | � 1 − ∣∣f 31

3 (k, eiθ )
∣∣2 in �1

C
√

|θ1 − θ | � 1 − ∣∣f 31
3 (k, eiθ )

∣∣2 in �2,

or both of the following inequalities hold:

C
√

|θ − ξi+1|
√|k − aj | � 1 − ∣∣f 31

3 (k, eiθ )
∣∣2 in �2

C
√

|θ1 − θ | � 1 − ∣∣f 31
3 (k, eiθ )

∣∣2 in �1.

Moreover, similar lower bounds hold for the other side of the interval cj < k < bj , with
aj replaced by bj .

In order to apply proposition 1.2 to obtain an exact formula for f i
j (k, z) over |z| < 1 and

extend it to |z| = 1, we use the following lemma.

Lemma 1.1. Suppose (A.1) holds. Then for a.e. k, hi
j (k, z) = f i

j (k, z), for |z| < 1,
and hi

j (k, z) is a version of f i
j (k, z) for |z| = 1, i.e. hi

j (k, eiθ ) is the Fourier transform of

in

j (wt = (0, y), τ = t).

We will show that for both Hadamard walk and Grover’s walk in two dimensions, condition
(A.1) holds. Therefore by solving the equation, we have an exact formula for f i

j (k, z), extended
up to |z| � 1. We will continue to use the same notation, f i

j (k, z), |z| � 1, for the extended
function. Similarly, we will obtain an exact formula for f in

3 (k, z) so that (1.6)–(1.10) and
corollary 1.1 hold for all z up to |z| � 1.
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1.4. The first hitting probabilities of D

The first hitting probability of D by a quantum random walk which starts with the initial state
|(n, 0)〉 ⊗ |i〉 is related to the following Green function:

f
i,n
j (y, z) =

∞∑
t=1


in
j (wt = (0, y), τ = t)zt . (1.11)

The probability that a two-dimensional quantum random walk in the right half-space Dc exits
from Dc at (0, y) is given by

P
i,n
3 (y) =

∞∑
t=1

∣∣
in
3 (wt = (0, y), τ = t)

∣∣2 = ∥∥
in
3 (wt = (0, y), τ = t)

∥∥2
L2(t)

. (1.12)

By (1.12), 
in
3 (wt = (0, y), τ = t) is in L2(t); therefore f

i,n
3 (y, z) is in L2(θ), for z = eiθ .

For n � 1, the probability that the quantum random walk ever exits from the right half-space
is

P
i,n
3 =

∑
y

∞∑
t=1

∣∣
in
3 (wt = (0, y), τ = t)

∣∣2 = ∥∥
in
3 (wt = (0, y), τ = t)

∥∥2
L2(y,t)

. (1.13)

By Fourier transform, we have

P
i,n
j (k) = 1

2π

∫ 2π

0
dθ

1

2π

∫ 2π

0
f

i,n
j (k − k1, eiθ )f

i,n
j (k1, e−iθ ) dk1 (1.14)

and

P
i,n
j = P

i,n
j (k)|k=0 = 1

2π

∫ 2π

0
dθ

1

2π

∫ 2π

0
f

i,n
j (−k1, eiθ )f

i,n
j (k1, e−iθ ) dk1. (1.15)

In this paper, we consider the following problems.

Problem 1. Suppose that the quantum random walk starts with the initial state |(n, 0)〉 ⊗ |i〉.
Let P i,n

3 be the probability that there is ever an exit from the right half-space. Find limn→∞ P
i,n
3 .

Problem 2. Let Yn = Yn(w) be the position on the y-axis that a quantum random walk hits
the left half-space the first time, with the initial position at (n, 0). Our problem is to find the
critical exponent α such that Yn/nα has a non-trivial scaling limit, as n goes to infinity. By the
well-known Levy–Cramer theorem, this is equivalent to the scaling limit of its characteristic
function (Fourier transform), i.e. show that the scaling limit limn→∞ 1

P
i,n
3

P
i,n
3

(
k
nα

)
exists.

Problem 3. Let τ be the first hitting time at the left half-space. It is well known that the
expectation of τ is infinity for classical random walks. Our problem is to show that for a
quantum random walk, if it hits, then the conditional expectation of τ is finite.

Problem 4. Determine the asymptotic behaviour of P
i,n
3 as n → ∞.

1.5. Main results

The following theorem gives the solution to problem 1.

Theorem 1.1. For a quantum random walk in two dimensions, if (A.1) holds, then P 3n
3

decreases as n increases, and

lim
n→∞ P 3n

3 = 1

(2π)2

∫ π

−π

∫ π

−π

χL(k, θ) dk dθ,

where χL is the indicator function of L = {
k, θ ∈ [0, 2π ]; ∣∣f 31

3 (k, eiθ )
∣∣ = 1

}
.
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Let P 3∞
3 = limn→∞ P 3n

3 . We will prove in section 4 that for the Hadamard walk in two
dimensions, P 3∞

3 ≈ 0.556 and for Grover’s walk, P 3∞
3 ≈ 0.387 129. For Grover’s walk in

two dimensions, theorem 1.4 gives an estimate of the rate of convergence for P 3n
3 , as n → ∞.

The following theorem is our result on the scaling limit of the hitting distribution, stated
in problem 2. Let Yn = Yn(w) be a random variable defined by wτ = (0, Yn(w)), for a path
w with the initial position w0 = (n, 0). Let Ein denote the expectation with respect to the
distribution P in

3 .

Theorem 1.2. Suppose (A.1)–(A.3) hold; then the critical exponent α = 1 and the conditional
distribution of Yn

n
given that τ < ∞ has the following limit:

lim
n→∞ E3n

[
eit Yn

n

∣∣τ < ∞] = 1

P 3∞
3 (2π)2

∫ π

−π

∫ π

−π

χL(k, θ) et∂kf
31
3 (k,e−iθ )[f 31

3 (k,e−iθ )]−1
dk dθ,

(1.16)

where χL is the indicator function of L = {
k, θ ∈ [0, 2π ]; ∣∣f 31

3 (k, eiθ )
∣∣ = 1

}
.

Remark 1.3. It is well known that for a classical random walk on Z2, Yn/n converges to a
Cauchy distribution with parameter 1 (characteristic function e−|t |), as n goes to infinity.

The next theorem solves problem 3.

Theorem 1.3. Suppose (A.1)–(A.4) hold; then given that τ is finite, the conditional expectation
of τ , with respect to E3n, is finite.

Remark 1.4. For a classical random walk on Z2, given that the initial position is (n, 0), the
expectation of τ is infinite.

The next theorem improves theorem 1.1 and solves problem 4.

Theorem 1.4. Suppose (A.1–A.6) hold. Then for any ε > 0,

c1n
−2 � P 3n

3 − P 3∞
3 � c2(ε)n

−2+ε, (1.17)

as n → ∞, where c1, c2(ε) are positive constants.

For applications of proposition 1.1–theorem 1.4, we show

Theorem 1.5. For both Hadamard walk and Grover’s walk in two dimensions, (A.1–A.6) hold.

We also obtain the following result on the exiting probability for Hadamard walk on a
half-line. Let p(t) be the probability that t is the first hitting time at 0 by a Hadamard walk
with the initial state |1〉 ⊗ |1〉.
Theorem 1.6. We have p(t) = 1

2 , for t = 1; p(t) = 8
π
t−3 + O(t−4), for t = 4k + 3, k =

1, 2, . . ., as t → ∞; and p(t) = 0, otherwise.

Since given τ < ∞ with ψ0 = |1〉 ⊗ |1〉, the conditional expectation E11[τ |τ < ∞] =∑t=∞
t=1 tp(t), we have

Corollary 1.2. For the Hadamard walk in one dimension, we have E11[τ |τ < ∞] < ∞.

To compare quantum random walks and classical random walks on half-line, using the
same metxprochod as that in theorem 1.6, we also obtain the well-known.
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Theorem 1.7. Let (Sn)
∞
0 be a simple random walk on Z1 starting at 1. Let pc(t) be the

probability that the first hitting time at 0 by (Sn)
∞
0 is t. Then

pc(t) =
√

2

π
t−

3
2 + O(t−2),

for t = 2k + 1, k = 1, 2, . . ., as t → ∞; pc(t) = 0, otherwise.

It follows from theorem 1.7 that the expectation of hitting time at 0 is infinite for the
classical case. For the quantum case, theorem 1.6 and corollary 1.2 show that the hitting
probability decays faster than the classical case and given τ < ∞, the conditional expectation
of τ is finite.

2. Proofs of proposition 1.1–corollary 1.1 and lemma 1.1

Proof of proposition 1.1. Proof of (a). By definition of U,

Ut |x〉|i〉 = Ut−1

∑
j

aji |x + ej 〉|j 〉


= Ut−2

∑
j2

∑
j1

aj2j1aj1i |x + ej1 + ej2〉|j2〉
 .

By induction, the above

=
∑

jt ,...,j1

ajt jt−1 . . . aj2j1aj1i

∣∣x + ej1 + ej2 + . . . + ejt

〉|jt 〉

=
∑
y,j


ix
j (ωt = y)|y〉|j 〉,

by definition. This proves (a).
(b) follows from (a) and the linearity. �

Proof of proposition 1.2. We first show that

lim
z→0

∑
y

∣∣f i
j (y, z)

∣∣ = 0. (2.1)

We note that 
i0
j (wt = (0, y), τ = t) = 0 if t < |y|. So

∑
y

∣∣f i
j (y, z)

∣∣ =
∑
y �=0

∣∣∣∣∣∣
∞∑

t=|y|

i0

j (wt = (0, y), τ = t)zt

∣∣∣∣∣∣ +

∣∣∣∣∣
∞∑
t=1


i0
j (wt = (0, 0), τ = t)zt

∣∣∣∣∣ .
Since 
i0

j (wt = (0, y), τ = t) is in L2(y, t), it is bounded by a constant M. Therefore, the
above sum is bounded by

M
∑
y �=0

∞∑
t=|y|

|z|t + M

∞∑
t=1

|z|t �
[

2M

1 − |z| + M

] |z|
1 − |z| ,

which goes to 0 as |z| → 0.
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Now, by considering a sample path of cases τ = 1, τ = 2, and for τ � 3, it visits the
vertical line x = 1 exactly l + 1 times before hitting D. We obtain the following recursive
relations:

f i
j (y, z) = zbi2δ2(j)δ1(y) + zbi4δ4(j)δ−1(y) + zbi1zb13δ3(j)δ0(y)

+ zbi1

∞∑
l=1

∑
j1j2...l

∑
y1y2...yl−1

f 1
j1
(y1, z)f

j1
j2

(y2 − y1, z) . . . f
jl−1
jl

(y − yl−1, z)zbjl3δ3(j).

The infinite series of the above sum is bounded by
∑

l 4lCl , where C = maxi,j

∥∥f i
j (y, z)

∥∥
L1(y)

and
∥∥f i

j (y, z)
∥∥

L1(y)
= ∑

y

∣∣f i
j (y, z)

∣∣. By (2.1), C < 1 if |z| is sufficiently small. Therefore,
the series is convergent for sufficiently small |z|.

Applying the Fourier transform, we have

f i
j (k, z) = zbi2δ2(j) eik + zbi4δ4(j) e−ik

+

zbi1zb13 + zbi1

∞∑
l=1

∑
j1j2...jl

f 1
j1
(k, z)f

j1
j2

(k, z) . . . f
jl−1
jl

(k, z)zbjl3

 δ3(j)

= zbi2δ2(j) eik + zbi4δ4(j) e−ik +

{
zbi1(zB)13 + zbi1

[ ∞∑
l=1

F lzB

]
13

}
δ3(j).

So we have

f i
j (k, z) = zbi2 eikδ2(j) + zbi4 e−ikδ4(j) + zbi1

[
I

I − F
zB

]
13

δ3(j).

Note that by (2.1), the above series is convergent for sufficiently small |z| and I − F is
invertible. This implies the theorem. �

Proof of corollary 1.1. Corollary 1.1 is proved by using a similar argument as in the proof of
proposition 1.2. �

Proof of lemma 1.1. Since for a.e. k, f i
j (k, z) is analytic in |z| < 1 and by assumption,

hi
j (k, z) = f i

j (k, z) for |z| < δ. They must equal in |z| < 1, for a.e. k.
Since for 0 < r < 1, f i

j (k, r eiθ ) is the Fourier transform of 
i0
j (wt = (0, y), τ = t)rt

and 
i0
j (wt = (0, y), τ = t)rt goes to 
i0

j (wt = (0, y), τ = t) in L2(y, t), we have
f i

j (k, r eiθ ) goes to f i
j (k, eiθ ) in L2(k, θ), as r → 1, which is the Fourier transform of


i0
j (wt = (0, y), τ = t). On the other hand, f i

j (k, r eiθ ) = hi
j (k, r eiθ ) and hi

j (k, z) is
continuous in |z| � 1; therefore, hi

j (k, eiθ ) is a version for f i
j (k, eiθ ). �

3. Proofs of theorems 1.1–1.4

Proof of theorem 1.1. Since for every k, f 3n
3 (k, z) is analytic in |z| < 1, for all n = 1, 2, 3, . . .,

corollary 1.1 holds for |z| < 1. Moreover, since f 31
3 (k, z) is relatively continuous in closed

unit ball, f 3n
3 (k, z) is also relatively continuous in the closed unit ball and corollary 1.1 holds

for |z| � 1.
By (1.15),

P 3n
3 = P 3n

3 (k)
∣∣
k=0

= 1

(2π)2

∫ π

−π

∫ π

−π

f 3n
3 (−k1, eiθ )f 3n

3 (k1, e−iθ ) dk1 dθ
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= 1

(2π)2

∫ π

−π

∫ π

−π

(
f 31

3 (−k1, eiθ )
)n(

f 31
3 (k1, e−iθ )

)n
dk1 dθ

= 1

(2π)2

∫ π

−π

∫ π

−π

[
f 31

3 (−k1, eiθ )f̄ 31
3 (−k1, eiθ )

]n
dk1 dθ

= 1

(2π)2

∫ π

−π

∫ π

−π

∣∣f 31
3 (−k1, eiθ )

∣∣2n
dk1 dθ, (3.1)

for all n = 1, 2, . . ..
Since P 3n

3 � 1, for all n, we have 0 �
∣∣f 13

3 (−k, eiθ )
∣∣ � 1, for a.e. k, θ ∈ [0, 2π ].

Therefore, P 3n
3 decreases as n increases. The limit exists as n goes to ∞. Moreover, by the

dominated convergence theorem, we have

lim
n→∞ P 3n

3 = lim
n→∞

1

(2π)2

∫ π

−π

∫ π

−π

∣∣f 31
3 (−k1, eiθ )

∣∣2n
dk1 dθ (3.2)

= 1

(2π)2

∫ π

−π

∫ π

−π

lim
n→∞

∣∣f 1,3
3 (−k1, eiθ )

∣∣2n
dk1 dθ

= 1

(2π)2

∫ π

−π

∫ π

−π

χL(k, θ) dk1 dθ, (3.3)

where χL is the indicator function of L = {
k, θ ∈ [0, 2π ]; ∣∣f 31

3 (−k1, eiθ )
∣∣ = 1

}
. �

Proof of theorem 1.2. By definition,

E3n[eit Yn
n |τ < ∞] = 1

p3n
3

∑
y∈Z

ei y

n
tp3n

3 (y)

= 1

p3n
3 (2π)2

∫ π

−π

∫ π

−π

f 3n
3 (−k, eiθ )f 3n

3

(
k +

t

n
, e−iθ

)
dk dθ

= 1

p3n
3 (2π)2

∫ π

−π

∫ π

−π

[
f 31

3 (−k, eiθ )
]n [

f 31
3 (k, e−iθ ) +

t

n

∂f 31
3 (ηkθ , e−iθ )

∂k

]n

dk dθ,

(3.4)

by the mean-value theorem. By (A.3), the above integrand goes to

χL(k, θ) et∂kf
31
3 (k,e−iθ )[f 31

3 (k,e−iθ )]−1
,

as n goes to ∞. By the dominated convergence theorem, we have thus proved the theorem.
�

Proof of theorem 1.3. We shall use the following theorem to prove theorem 1.3. �

Theorem 3.1. Let µ be a probability measure supported in [0,∞). Let ρ(s) = ∫∞
0 e−st dµ(t)

be the Laplace transform of µ. For all n = 1, 2, . . ., the following statements hold.

(a) If
∫∞

0 tn dµ(t) < ∞, then (−1)n
dnρ(s)

dsn = ∫∞
0 tn e−st dµ(t) < ∞.

(b) If (−1)n
dnρ(s)

dsn

∣∣
0 exists, then

∫∞
0 tn dµ(t) < ∞.

The proof of theorem 3.1 is given in the appendix. To prove theorem 1.3, let

P
i,n
j (t) =

∑
y∈Z

∣∣
in
j (wt = (0, y), τ = t)

∣∣2 = ∥∥
in
j (wt = (0, y), τ = t)

∥∥2
L2(y)

(3.5)
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be the probability that a two-dimensional quantum random walk in the right half-space Dc,
with the initial position at (n, 0) and type i, exists from Dc at time t. Let

ρ(s) =
∞∑
t=1

e−stP
i,n
j (t)

be the Laplace transform. By the same argument as that in (1.15), we have

ρ(s) = 1

2π

∫ 2π

0
dθ

1

2π

∫ 2π

0
f

i,n
j (−k, e−s+iθ )f

i,n
j (k, e−iθ ) dk

= 1

2π

∫ 2π

0
dθ

1

2π

∫ 2π

0

[
f

i,1
j (−k, e−s+iθ )f

i,1
j (k, e−iθ )

]n
dk. (3.6)

We will consider the case i = j = 3 only, since other cases can be treated the same. The
derivative of the above integrand is

∂s

[
f

3,1
3 (−k, e−s+iθ )f

3,1
3 (k, e−iθ )

]n
= n

[
f

3,1
3 (−k, e−s+iθ )

]n−1
∂sf

3,1
3 (−k, e−s+iθ )

[
f

3,1
3 (k, e−iθ )

]n
.

By (A.2) and (A.6),
∣∣f 3,1

3

∣∣ � 1 and for every k, there exists a set Dk =
[0, 2π ]\{θ1(k), θ2(k), . . . , θm(k)} such that the partial derivative ∂rf

31
3 (k, r e−iθ ) exists and

is continuous in 0 < r < 1, θ ∈ Dk . Moreover there exists a constant, independent of k, θ, r

such that ∣∣∂rf
31
3 (k, r eiθ )

∣∣ � C

m∑
i=1

1√|θ − θi |
,

for all k ∈ [0, 2π ], 1
2 < r < 1 and θ ∈ Dk . Therefore, the derivative of the integrand in (3.6)

is bounded by

C

m∑
i=1

1√|θ − θi |
,

which is independent of s and integrable. By the dominated convergence theorem, ρ(s) is
differentiable. By theorem 3.1,

∑∞
t=1 tP

3,n
3 (t) < ∞. This implies the theorem.

Proof of theorem 1.4. To prove theorem 1.4, we use the following lemma [9, p. 37]. �

Lemma 3.1. Let g and h be functions on interval (α, β) such that the integral f (n) =∫ β

α
g(u) enh(u) du exists for all sufficiently large positive n. Suppose h is a real-valued function,

continuous at u = α, continuously differentiable for α < u � α + η, with η > 0. Suppose
further that h′ < 0, for α < u � α + η, and h(u) � h(α) − ε, with ε > 0, for α + η � u � β.
If h′(u) ∼ −A(u − α)ν−1 and g(u) ∼ B(u − α)λ−1 as u → α, λ > 0, ν > 0, then

f (n) =
∫ β

α

g(u) enh(u) du ∼ B

ν
�

(
λ

ν

)( ν

An

) λ
ν

enh(α)

as n → ∞.

By theorem 1.1,

P 3n
3 − P 3∞

3 = 1

(2π)2

∫
Lc

|f |2n dθ dk

= 1

(2π)2

t−1∑
i=1

∑
j

∫ ξi+1

ξi

∫
Ij

|f |2n dk dθ. (3.7)
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Let Ij = (aj , bj ) and cj = aj +bj

2 . We write
∫
Ij

= ∫ cj

aj
+
∫ bj

cj
. Then (3.7) is a finite sum

of integrals. To prove theorem 1.4, it is then sufficient to show that each term has the desired
asymptotic behaviour.

Let

Q = 1

(2π)2

∫ ξi+1

ξi

∫ cj

aj

|f |2n dk dθ. (3.8)

be one of the terms in the above sum. We will consider Q only since the rest can be treated in
the same way.

By (A.3), f is continuous in (aj , cj ), |f (aj )| = 1, |f (cj )| < 1 and |f | is strictly less than
1 in (aj , cj ). Moreover, by (A.5), there is a sufficiently small positive constant ε, independent
of θ such that

Oij = {ξi < θ < ξi+1; aj + ε < cj }
has a positive Lebesgue measure,

1 − ∣∣f 31
3 (k, eiθ )

∣∣2 � C
√|k − aj |, C

√|k − aj | � 1
2 , (3.9)

for all ξi < θ < ξi+1, ai < k � ai + ε, and

|f |2 � α < 1, (3.10)

for all ξi < θ < ξi+1, ai + ε < k < ci .
For the lower bound of Q, we have

Q � 1

(2π)2

∫
Oij

∫ (aj +ε)

aj

∣∣1 − C(k − aj )
1
2
∣∣n dk dθ.

Applying lemma 3.1, with

h(k) = ln
[
1 − C(k − aj )

1
2
]
,

g(k) = 1, λ = 1, ν = 1
2 ,

we have

1

(2π)2

∫
Oij

∫ (aj +ε)

aj

∣∣1 − C(k − aj )
1
2
∣∣n dk dθ ∼

∫
Oij

Cn−2 dθ ∼ O(n−2),

as n → ∞, since Oij has a positive Lebesgue measure.
For the upper bound, let Q1 = 1

(2π)2

∫
�1

|f |2n dk dθ and Q2 = 1
(2π)2

∫
�\�1

|f |2n dk dθ .
Then

Q = Q1 + Q2.

Let �11 = {ξi < θ < ξi+1 − η, aj < k < aj + γ },�12 = {ξi < θ < ξi + γ, aj < k < cj }
and �13 = �1\(�11 ∪ �12). By (A.6), if γ is sufficiently small, then

C
√

|θ − ξi |
√|k − aj | � 1 − ∣∣f 31

3 (k, eiθ )
∣∣2 in �11, (3.11)

C
√

|θ − ξi |
√|k − aj | � 1 − ∣∣f 31

3 (k, eiθ )
∣∣2 in �12, (3.12)∣∣f 31

3 (k, eiθ )
∣∣2 � α < 1 in �13, (3.13)

and

C
√

|θ − ξi |
√|k − aj | � 1

2 .
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We have

Q1 � Q11 + Q12 + Q13,

where

Q11 = 1

(2π)2

∫ ξi+1−η

ξi

∫ (aj +γ )

aj

|f |2n dk dθ,

Q12 = 1

(2π)2

∫ ξi+γ

ξi

∫ cj

aj

|f |2n dk dθ,

Q13 = 1

(2π)2

∫
�13

|f |2n dk dθ.

By (3.13), Q13 = O(e−cn), as n → ∞, for some c > 0. For the upper bound of Q11, by
(3.11), for any δ > 0,

Q11 � 1

(2π)2

∫ ξi+1−η

ξi

∫ (aj +γ )

aj

∣∣1 − C(θ − ξi)
1
2 (k − aj )

1
2 +δ
∣∣n dk dθ.

Applying lemma 3.1, with

h(k) = ln
[
1 − C|θ − ξi | 1

2 (k − aj )
1
2 +δ
]
,

g(k) = 1, λ = 1, ν = 1
2 + δ, A = C|θ − ξi | 1

2 , B = 1,

we have

1

(2π)2

∫ ξi+1−η

ξi

∫ (aj +γ )

aj

∣∣1 − C(θ − ξi)
1
2 (k − aj )

1
2 +δ
∣∣n dk dθ

∼
∫ ξi+1−η

ξi

(
1

C(θ − ξi)
1
2 n

)( 1
2 +δ)

−1

dθ ∼ O(n−2+ε),

as n → ∞. Here ε can be chosen arbitrary small if δ is chosen small enough.
Similarly, Q12 � O(n−2+ε), as n → ∞.
For Q2, let �21 = {k1(ξi+1 − η) < k < cj , θ1 − γ < θ < θ1},�22 = (�\�1)\�21. By

(A.6), if γ is sufficiently small, then

C
√

|θ − θ1| � 1 − ∣∣f 31
3 (k, eiθ )

∣∣2 in �21, (3.14)

∣∣f 31
3 (k, eiθ )

∣∣2 � α < 1 in �22, (3.15)

and

C
√

|θ − θ1| � 1
2 .

Let

Q21 = 1

(2π)2

∫
�21

|f |2n dk dθ, Q22 = 1

(2π)2

∫
�22

|f |2n dk dθ.

Then Q2 = Q21 + Q22. By (3.15), Q22 = O(e−cn), as n → ∞, for some c > 0. By a similar
argument as that in the lower bound, Q21 � O(n−2), as n → ∞.
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4. Proof of theorems 1.5

Proof of (A.6). For Grover’s walk in two dimensions, we put

A = 1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


in equation (1.6) and solve. We get g(z) = 0 if z = 0,−eik or −e−ik . For 0 < |z| < δ, z �=
−eik,−e−ik, 0,

g(z) = z4 + z3 cos k + z cos k + 1 − R(z)

z(z + eik)(z + e−ik)
, (4.1)

where

R(z) =
√

(−1 + z2)2[1 + z2 + z4 + 2(z + z3) cos k + z2 cos2 k]. (4.2)

By proposition B.1 in the appendix, a branch of R(z) can be chosen such that R(z) is analytic
in |z| < 1, relatively continuous in |z| � 1 and R(0) = 1. Let h(k, z) be the right-hand side
of (4.1). To show (A.6), it is sufficient to show that for every k, h(k, z) is analytic in |z| < 1
and continuous in |z| � 1.

Since R(z) is analytic in |z| < 1 and relatively continuous in |z| � 1, the numerator of
h is analytic in the unit disc and thus h is meromorphic. The denominator of h(z) on the
boundary of the unit disc is 0 only if z = −eik or z = −e−ik and in either case, the numerator
is also zero. We note that z4 + z3 cos k + z cos k + 1 + R(z) at z = −eik or z = −e−ik is not 0.
Multiplying z4 + z3 cos k + z cos k + 1 +R(z) to the numerator and the denominator of h(z), the
numerator becomes z2(z + eik)2(z + e−ik)2. This implies that the numerator is a zero of order 2
at z = −eik or z = −e−ik . This implies that h(z) = 0 at z = −eik or z = −e−ik . Therefore h
is relatively continuous in the closed unit ball, if h is analytic inside the unit disc. Therefore,
it remains to show that h is analytic in |z| < 1.

To this end, recall that f 11
3 (k, z) is analytic in {|z| < 1} and, by (1.9), equals to h in

{|z| < δ}. Let z0 be the pole of h with the smallest norm. Suppose |z0| = r < 1. Then h is
analytic for |z| < r . However, this implies that f 11

3 = h for |z| < r . Note that f 11
3 is analytic

for all |z| < 1; hence limz→z0 h(z) = limz→z0 f 11
3 (k, z) exists. This contradicts to the fact that

z0 is a pole for h. Therefore, h is analytic in the unit disc. We have thus proved that both h
and g are analytic inside the unit disc and relatively continuous in the closed unit ball.

We now consider the case of Hadamard walk. For Hadamard walk in two dimensions,
we put

A = 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


in (1.6) and solve. We get g(z) = 0 for z = 0, eik, e−ik . For 0 < |z| < δ, z �= 0, eik,−e−ik ,

g = −z4 + iz3 sin k + iz sin k + 1 − R(z)

z(−z + eik)(z + e−ik)
, (4.3)

where

R(z) =
√

(−1 + z2)(−1 + z6 − 2iz sin k − 2iz5 sin k + z2 sin2 k − z4 sin2 k). (4.4)

To show (A.6) for Hadamard walk, by (1.6), it is sufficient to show that for every k, g(k, z)

is analytic in |z| < 1 and continuous in |z| � 1. Let h(k, z) be the right-hand side of (4.3).
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We shall first show that for every k, h(k, z) is analytic in |z| < 1 and continuous in |z| � 1.
Let

K = (−1 + z2)(−1 + z6 − 2iz sin k − 2iz5 sin k + z2 sin2 k − z4 sin2 k).

Then R2(z) = K .
Consider K on the unit circle,

K(k, eiθ ) = 4e4iθ sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ).

Also,

sin θ sin2 k + 2 cos 2θ sin k − sin 3θ = 2

(
sin

θ

2
sin k + cos

3θ

2

)(
cos

θ

2
sin k − sin

3θ

2

)
.

This is a quadratic equation for sin k. For every θ , there is only one solution for sin k (the
other solution has an absolute value greater than 1).

Note that sin θ
2 and sin 3θ

2 are periodic. Hence for every k, there are six θ ’s corresponding
to sin k, which give the six roots on the unit circle for every k. Taking 1 and −1 into account,
K(k, z) has eight zeros on the unit circle. These are all the zeros for K(k, z) on the complex
plane since K(k, z) is a polynomial of degree 8 in z, for every k. By the same argument as
that used for Grover’s walk, we can choose a branch cut for R(z) such that it is analytic in
the unit disc and R(0) = 1. This implies that h is meromorphic inside the unit disc. By the
same argument as that used for Grover’s walk, h is analytic inside the unit disc and relatively
continuous in the closed unit ball.

Proof of (A.2). For Hadamard walk, by solving equation (1.6), we have f 31
3 (k, 0) = 0,

and for 0 < |z| < δ,

f 31
3 (k, z) = z(−1 + z2 + z cos k − iz sin k)

1 − z2 + z4 − iz(−1 + z2) sin k + R(z)
. (4.5)

By the same argument as that for g in the proof of (A.6), the above expression for
f 31

3 (k, z) can be extended to |z| < 1. Since both the denominator and numerator of f 31
3 (k, z)

are relatively continuous in the closed unit ball, to show that f 31
3 (k, z) is relatively continuous

in the closed unit ball, it is sufficient to show that the denominator is non-zero on |z| = 1.
To this end, we write

f 31
3 (k, z) = N

T + R(z)
,

where

N = z(−1 + z2 + z cos k − iz sin k),

T = 1 − z2 + z4 − iz(−1 + z2) sin k,

R2(z) = K,

K = (−1 + z2)(−1 + z6 − 2iz sin k − 2iz5 sin k + z2 sin2 k − z4 sin2 k).

By comparing the real part and the imaginary part of (T 2 − K)(k, eiθ ) = 0, we have

T 2 − K = 0

if and only if

sin k = 3 − 2 cos 2θ

4 sin θ
.

However, ∣∣∣∣3 − 2 cos 2θ

4 sin θ

∣∣∣∣ =
∣∣∣∣ 1

4 sin θ
+ sin θ

∣∣∣∣ � 1.
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Hence, the only two solutions for T + R(z) = 0 are θ = π
6 , k = π

2 and θ = −π
6 , k = −π

2 . By
evaluating the function at these points, we see T + R(z) �= 0. Therefore, the denominators of
f 31

3 (k, eiθ ) is never zero.
From the proof of theorem 1.1, since P 3n

3 � 1, for all n, we have 0 �
∣∣f 13

3 (−k, eiθ )
∣∣ � 1,

for a.e. k, θ ∈ [0, 2π ]. For Hadamard walk, to show L = {
k, θ ∈ [0, 2π ]; ∣∣f 31

3 (k, eiθ )
∣∣ = 1

}
has a positive Lebesgue measure, we first show

|f (k, eiθ )| = 1 ⇐⇒ sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ) � 0. (4.6)

By direct calculation, we have

|T 2 − K| = |N |4,
|N |2 = 1 + 4 sin θ(sin θ − sin k),

|R(z)|2 = |4 sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ)|,
|T |2 = (1 − 4 sin2 θ + 2 sin θ sin k)2.

Also, note that |T + R(z)|2 = |N2|
|f |2 and |T − R(z)|2 = |T 2−K||f |2

|N |2 . Then we have

|T 2 − K|2|f |4 − 2(|T |2 + |R(z)|2)|N |2|f |2 + |N |4 = 0.

Hence, |f | = 1 if and only if

|T 2 − K|2 − 2(|T |2 + |R(z)|2)|N |2 + |N |4 = 0,

i.e.

−4 sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ)

= |4 sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ)|,
which holds only when the left-hand side is non-negative. This implies (4.6) and L =
{θ, k; sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ) � 0}.

Let k1 = k1(θ) = arcsin
( sin 3θ

2

sin θ
2

)
and k2 = k2(θ) = arcsin

(− cos 3θ
2

sin θ
2

)
. Then in the square

{(θ, k) ∈ [0, 2π ] × [0, 2π ]}, Lc is the region{
θ ∈ [0, π

4

]
, k ∈ (k1, π − k1)

}
∪ {

θ ∈ [π
4 , π

3

]
, k ∈ (π − k2, 2π + k2)

}
∪ {

θ ∈ [π
3 , π

2

]
, k ∈ (0, k2) ∪ (π − k2, 2π)

}
∪ {

θ ∈ [π
2 , 2π

3

]
, k ∈ (0, k1) ∪ (π − k1, 2π)

}
∪ {

θ ∈ [ 2π
3 , 3π

4

]
, k ∈ (π − k1, 2π + k1)

}
∪ {

θ ∈ [ 3π
4 , π

]
, k ∈ (k2, π − k2)

}
∪ {

θ ∈ [π, 5π
4

]
, k ∈ (π − k2, 2π + k2)

}
∪ {

θ ∈ [ 5π
4 , 4π

3

]
, k ∈ (k1, π − k1)

}
∪ {

θ ∈ [ 4π
3 , 3π

2

]
, k ∈ (0, π − k1) ∪ (2π + k1, 2π)

}
∪ {

θ ∈ [ 3π
2 , 5π

3

]
, k ∈ (0, π − k2) ∪ (2π + k2, 2π)

}
∪ {

θ ∈ [ 5π
3 , 7π

4

]
, k ∈ (k2, π − k2)

}
∪ {

θ ∈ [ 7π
4 , 2π

]
, k ∈ (π − k1, 2π + k1)

}
,

see figure 1. This implies that L has a positive Lebesgue measure. The numerical value of the
Lebesgue measure of L ≈ 0.556.
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0     pi/2 pi 3*pi/2 2*pi
0     

pi/4

pi/2

3*pi/4

pi

5*pi/4

3*pi/2

7*pi/4

2*pi

Figure 1. The shaded area is L for the Hadamard walk in two dimensions. The k-axis is the
horizontal axis and the θ -axis is the vertical axis.

For Grover’s walk, solving equation (1.6) we get f 31
3 (k, 0) = 0 and for 0 < |z| < δ,

f 31
3 (k, z) = z − z3

−1 + z4 + z(−1 + z2) cos k − R(z)
, (4.7)

where

R(z) =
√

(−1 + z2)2(1 + z2 + z4 + 2(z + z3) cos k + z2 cos2 k). (4.8)

By the same argument as that for the case of the Hadamard walk, the above expression for
f 31

3 (k, z) can be extended to |z| < 1.
We write

f 31
3 (k, z) = N

T − R(z)
,

where

N = z − z3,

T = −1 + z4 + z(−1 + z2) cos k,

R2(z) = K,

K = (−1 + z2)2[1 + z2 + z4 + 2(z + z3) cos k + z2 cos2 k].

Simplifying, we get

f 31
3 (k, z) = z

−1 − z2 − z cos k − Rs(z)
= Ns

Ts − Rs(z)
,

with R2
s (z) = 1 + z2 + z4 + 2(z + z3) cos k + z2 cos k. The branch cut for Rs(z) is defined

similarly as in R(z). By direct calculation, T 2
s − Rs = z2. Hence, Ts − Rs(z) �= 0 on the unit

circle. Therefore for every k, f 31
3 (k, z) is relatively continuous in the closed unit ball.

A similar argument as in the case of the Hadamard walk shows

|f (k, eiθ )| = 1 ⇐⇒ (2 cos θ + cos k)2 − 1 � 0. (4.9)
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0     pi/2 pi 3*pi/2 2*pi
0     

pi/2

pi

3*pi/2

2*pi

Figure 2. The shaded area is L for Grover’s walk in two dimensions. The k-axis is the horizontal
axis and the θ -axis is the vertical axis.

Therefore, L equals the region defined by the right-hand side of (4.9). Then the region Lc

in the square (θ, k) ∈ [0, π ] × [0, π ] is

{k ∈ [0, π ], θ ∈ (0, θ1) ∪ (θ2, π)},
here θ1 = arccos

(
1−cos k

2

)
, θ2 = arccos

(−1−cos k
2

)
, see figure 2. Therefore, L has a positive

Lebesgue measure; we have thus proved (A.2) for Grover’s walk. The numerical value for the
Lebesgue measure of L ≈ 0.387 129.

Proof of (A.3). From the proof of proposition B.1 in the appendix, for every fixed k,
all the zeros of K is on the unit circle. Fix θ , let ki(θ), i = 1, 2, . . . , l, be the solutions of
K(k, eiθ ) = 0. For Hadamard walk, from the proof of (A.2),

f 31
3 (k, eiθ ) = N

T + R(z)
,

where N and T are smooth functions of k and θ respectively. Then

∂f 31
3 (k, eiθ )

∂k
=

(∂kN)(T + R(z)) − N
(
∂kT + ∂kK

1
2R(z)

)
(T + R(z))2

.

From the proof of (A.2), the denominator can never be zero on the unit circle. Therefore,
∂f 31

3 (k,eiθ )

∂k
exists and is continuous in Dθ .

For Grover’s walk, we get from the proof of (A.2),

f 31
3 (k, z) = z

−1 − z2 − z cos k − Rs(z)
= Ns

Ts − Rs(z)
,

with R2
s (z) = 1 + z2 + z4 + 2(z + z3) cos k + z2 cos k. The denominator can never be zero on the

unit circle. By the same argument as for the Hadamard case, (A.3) holds for Grover’s walk as
well.

Proof of (A.4). For the Hadamard walk, from the proof of proposition B.1, for every fixed
k, all the zeros of K are on the unit circle. Let θ1(k), θ2(k), . . . , θ8(k) be the angles of the zeros
of K.
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Let r = e−s . Then∣∣∣∣∂f∂s

∣∣∣∣ = |∂zf ∂sz|

=
∣∣∣∣∂zN(T + R(z)) − N(∂zT + ∂zR(z))

(T + R(z))2
(−e−s eiθ )

∣∣∣∣ .
Note that T + R(z) is non-zero on the unit circle. Also, N and T are polynomials in z. Hence,
we only need to estimate ∂zR(z).

From the proof of proposition B.1, R(z) = ∏8
j=1 hθj

, and properties (c)–(e) in there, we
have ∣∣h′

θj
(z)
∣∣ = ∣∣R′

π+θj
(eiθj − z)(−1)

∣∣ =
∣∣∣∣ 1

2Rπ+θj
(eiθj − z)

∣∣∣∣
= 1

2
√

|eiθj − z|
� C√|θj − θ | ,

if z = r eiθ , 0 < r0 < r < 1.
By property (e) in the proof of proposition B.1,∣∣hθj

(z)
∣∣ = ∣∣Rπ+θj

(eiθj − z)
∣∣

=
√

|eiθj − z| � C,

for all |z| � 1. By the product rule, (A.4) follows.
For Grover’s walk, we use the simplified formula from the proof of (A.2),

f 31
3 (k, z) = z

−1 − z2 − z cos k − Rs(z)
= Ns

Ts − Rs(z)
,

with R2
s (z) = 1 + z2 + z4 + 2(z + z3) cos k + z2 cos k. The denominator can never be zero on

the unit circle. By the same argument as that for the Hadamard case, (A.4) holds for Grover’s
walk as well.

Proof of (A.5). For simplicity, we write f for f 31
3 . We first consider the Hadamard walk.

Let ξ1 = 0, ξ2 = π/4, ξ3 = π/2, ξ4 = 3π/4, ξ5 = π, ξ6 = 5π/4, ξ7 = 3π/2, ξ8 = 7π/4
and ξ9 = 2π . For a fixed θ �= ξi, L

c is an union of open intervals, ∪j Ij . Let
p1(θ) < p2(θ) < · · · < pl(θ) be the endpoints of the intervals.

Let k1(θ) = arcsin
sin 3θ

2

sin θ
2

. Then k1 is a root of the quadratic equation

sin θ sin2 k + 2 cos 2θ sin k − sin 3θ = 0.

For θ ∈ (0, π
4

)
, p1(θ) = k1(θ) and p2(θ) = π − k1(θ). Let � = {

θ ∈ (0, π
4

)
, k ∈ (k1, π/2)

}
.

We will consider the behaviour of |f |2 over � only, since the other regions can be treated
similarly.

In �, we have

|f |2 = 1 − 4 sin θ sin k + 4 sin2 θ

{1 − 4 sin2 θ + 2 sin θ sin k + 2
√

sin θ(sin θ sin2 k + 2 cos 2θ sin k − sin 3θ)}2

= N0

(T0 + 2
√

K0)2
.

Hence,

1 − |f |2 = 8K0 + 4T0
√

K0

(T0 + 2
√

K0)2

= 4
√

K0

T0 + 2
√

K0
.
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Fix θ , as k → k1 from � or equivalently, sin k → sin 3θ
2

sin θ
2

, we have

T0 + 2
√

K0 → −1 + 2 cos θ � C > 0,

where C is independent of θ ∈ [0, π/4]. This implies that

1 − |f |2 ∼ O(
√

K0). (4.10)

Now we show the upper bound. For a fixed θ , we have

∂kK0 = cos k(2 sin θ sin k + 2 cos 2θ) sin θ. (4.11)

Since the right side of (4.11) is less than a positive constant for all (θ, k) in �, by the mean-value
theorem, we have

K0(θ, k) � C1(k − k1), (4.12)

for all (θ, k) in �. By (4.10), we then have

1 − |f |2 � C1

√
k − k1, (4.13)

for all (θ, k) in �.
For Grover’s walk, for convenience we will prove (A.5) by interchanging the role of k and

θ , which is essentially the same. Also by symmetry, we only need to consider 0 � θ � π and
0 � k � π . Let ξ1 = 0 and ξ2 = π . For fixed 0 < k < π , let p1(k) < p2(k) < · · · < pl(k) be
the endpoints of the intervals in Lc. For k ∈ (0, π), p1(k) = 0, p2(k) = θ1(k), p3(k) = θ2(k)

and p4(k) = π , where θ1 = arccos
(

1−cos k
2

)
, θ2 = arccos

(−1−cos k
2

)
. We shall consider the

behaviour of |f |2 on � = {(θ, k)|k ∈ (0, π), θ ∈ (0, θ1(k))} only since the rest of the region
can be treated similarly.

In �, we have

|f |2 = [−2 cos θ − cos k +
√

(2 cos θ + cos k)2 − 1]2

= [−M(θ, k) +
√

M2(θ, k) − 1]2,

where M(θ, k) = 2 cos θ + cos k. Note that on θ = θ1,M(θ, k) = 1; therefore,

1 − |f |2 = 1 − (−M +
√

M2 − 1)2 = 2(1 − M2) + 2M
√

M2 − 1 ∼ O(
√

M2 − 1), (4.14)

as M → 1. Since

∂θ (M
2 − 1) = −2M sin θ,

and |M| � 3 in �, we have

M2 − 1 � C(θ1 − θ),

in �, by the mean-value theorem. This implies (A.5) for Grover’s walk.
Proof of (A.6). We shall consider � = {

θ ∈ (
0, π

4

)
, k ∈ (k1, π/2)

}
only since

the rest can be treated similarly. Let �1 = {
θ ∈ (

0, π
4 − η

)
, k ∈ (k1, π/2)

}
and

�2 = {
θ ∈ (

π
4 − 2η, π

4

)
, k ∈ (k1, π/2)

}
. For fixed k, let θ1 be such that k1(θ1) = k.

We shall show

1 − |f |2 � C2

√
θ − θ1, (4.15)

for all (θ, k) in �2, and

1 − |f |2 � C2

√
θ
√

k − k1, (4.16)

for all (θ, k) in �1.
By

∂θK0 = cos θ(sin θ + 2 cos 2θ − sin 3θ) + sin θ(cos θ − 4 sin 2θ − 3 cos 3θ), (4.17)
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we have

−∂θK0

(π

4
,
π

2

)
> 0,

and since ∂θK0 is continuous everywhere, there exists α > 0, such that

−∂θK0 � C2 > 0, (4.18)

for all (θ, k) in �2. By the mean-value theorem,

K0 � C2(θ − θ1), (4.19)

for all (θ, k) in �2. By (4.10), we have thus proved (4.15).
To prove (4.16), we take the partial derivative in k. By (4.11),

∂kK0 = cos k(2 sin θ sin k + 2 cos 2θ) sin θ.

Let

Z(θ, k) = cos k(2 sin θ sin k + 2 cos 2θ).

Then Z is continuous everywhere. Note that Z(θ, k1) is positive and bounded away from zero
uniformly in 0 � θ � π/4 − η, and C2θ < sin θ , for some C2 > 0; there exists a sufficiently
small γ such that

∂kK0 � C2θ, (4.20)

for all 0 < θ < π/4 − η, k1 < k < k1 + γ . By the mean-value theorem and (4.10), we have

1 − |f |2 � C2

√
θ
√

k − k1,

for all 0 < θ < π/4 − η, k1 < k < k1 + γ . Since 1 − |f |2 is positive and uniformly bounded
away from zero on 0 < θ < π/4 − η, k1 + γ � k � π/2, we have proved (4.16) by choosing
a sufficiently small C2 > 0.

Now we prove (A.6) for Grover’s walk. We shall consider the behaviour of |f |2 on
� = {(θ, k)|k ∈ (0, π), θ ∈ (0, θ1(k))} only since the rest of the region can be treated
similarly. By (4.14), we have

1 − |f |2 ∼ O(
√

M2 − 1), as M → 1.

Here M2 − 1 = (2 cos θ + cos k)2 − 1, and

∂θ (M
2 − 1) = −2M sin θ. (4.21)

Let �1 = {(θ, k), 0 < k < π−η, 0 < θ < θ1} and �′
1 = {(θ, k), 0 < k < π−η, θ1−γ <

θ < θ1}. Note that M is strictly positive bounded away from zero in �, and sin θ is bounded
away from zero in �′

1; therefore, by the mean-value theorem, there exist positive constants η

and γ such that

1 − |f |2 � C
√

θ1 − θ in �′
1. (4.22)

Since 1 − |f |2 is strictly positive and relatively continuous in the closure of �1\�′
1, we

have

1 − |f |2 � C
√

θ1 − θ in �1, (4.23)

if C is sufficiently small.
Let �2 = {(θ, k), π −2η < k < π, 0 < θ < θ1} and �′

2 = {(θ, k), 0 < θ < θ0, k1 −γ <

k < k1}, where 0 < θ0 < π/2 such that (θ0, π − 2η) is on the boundary of L.
We have

∂k(M
2 − 1) = −2 sin kZ(θ, k),
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where Z(θ, k) = cos k + 2 cos θ . Note that Z(0, π) = 1 and is continuous. This implies that
there exist positive constants γ and η such that

Z(θ, k) > C > 0 in �′
2.

If π/2 < k < k1 < π , then

sin k � sin k1 =
√

1 − (1 − 2 cos θ)2

=
√

4 cos θ(1 − cos θ) =
√

8 cos θ sin
θ

2
� C2 > 0 in �′

2.

This implies that

1 − |f |2 � C
√

θ
√

k1 − k in �′
2.

Since 1−|f |2 is continuous strictly positive in the closure of �2\�′
2, we have thus proved

1 − |f |2 � C
√

θ
√

k1 − k in �2,

for a sufficiently small constant C. This proves (A.6) for Grover’s walk.

5. One-dimensional walks, proof of theorem 1.6

For the one-dimensional Hadamard walk, the equation analogous to proposition 1.2 is

F = zÃ

(
0 0
0 ([1 − F ]−1zA)12

)
. (5.1)

Solving the equation, we get

f
1,1
2 (0) = 0, f

1,1
2 (z) = g(z) = 1 + z2 − √

1 + z4

√
2z

. (5.2)

Note that the solution is analytic in |z| < 1 and relatively continuous in the closed unit ball.
Therefore, it is a version of f

1,1
2 (z) on the closed unit ball.

Remark 5.1. Equation (5.2) has been obtained in [3].

Proof of theorem 1.6. Let

A(t) = 1

2π

∫ 2π

0
f

1,1
2 (e−iθ ) eitθ dθ.

By the Fourier inverse transform, we have

p(t) = ∣∣
11
2 (wt = 0, τ = t)

∣∣2 = |A(t)|2.
We write A(t) = B(t) − C(t), where

B(t) = 1

2π

∫ 2π

0

√
2 cos θ eitθ dθ,

C(t) =
√

2

4π

∫ 2π

0

√
1 + e−4iθ ei(t+1)θ dθ.

We have

B(t) =
√

2

π

∫ π

0
cos(θ) cos(tθ) dθ = 0,

if t � 2, and
√

2/2 if t = 1.
To estimate C(t), we shall use the following lemma [9, p. 49, (11)]. �
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Lemma 5.1. If φ(θ) is N times continuously differentiable for α � θ � β, and
0 < λ � 1, 0 < µ � 1, then∫ β

α
eitθ (θ − α)λ−1(β − θ)µ−1φ(θ) dθ = BN(t) − AN(t) + O(t−N) as t → ∞, where

AN(t) =
N−1∑
n=0

�(n + λ)

n!
eπ i(n+λ−2)/2t−n−λ eitα dn[(β − α)µ−1φ(α)]

dαn

BN(t) =
N−1∑
n=0

�(n + µ)

n!
eπ i(n−µ)/2t−n−µ eitβ dn[(β − α)λ−1φ(β)]

dβn
,

and O(t−N) may be replaced by o(t−N) if λ = µ = 1.

We note that for 0 < θ < π,
√−e2iθ = −i eiθ and

√−e−2iθ = i e−iθ ; for 0 < θ <

π/2,
√

e2iθ = eiθ and
√

e−2iθ = e−iθ ; for π/2 < θ < π , we have
√

e2iθ = −eiθ and√
e−2iθ = −e−iθ .

Therefore, we have

4π√
2
C(t) =

∫ 2π

0

√
1 + e−4iθ ei(t+1)θ dθ

=
∫ π

0

√
1 + e−4iθ ei(t+1)θ dθ +

∫ π

0

√
1 + e4iθ e−i(t+1)θ dθ

=
∫ π/4

0

√
2 cos (2θ) eitθ dθ +

∫ π/2

π/4
i
√

−2 cos (2θ) eitθ dθ

+
∫ 3π/4

π/2
i
√

−2 cos (2θ) eitθ dθ +
∫ π

3π/4
−
√

2 cos (2θ) eitθ dθ

+
∫ π/4

0

√
2 cos (2θ) e−itθ dθ +

∫ π/2

π/4
−i
√

−2 cos (2θ) e−itθ dθ

+
∫ 3π/4

π/2
−i
√

−2 cos (2θ) e−itθ dθ +
∫ π

3π/4
−
√

2 cos (2θ) e−itθ dθ

=
∫ π/4

0
2 cos (tθ)

√
2 cos (2θ) dθ +

∫ π/2

π/4
−2 sin (tθ)

√
−2 cos (2θ) dθ

+
∫ 3π/4

π/2
−2 sin (tθ)

√
−2 cos (2θ) dθ +

∫ π

3π/4
−2 cos (tθ)

√
2 cos (2θ) dθ

= 8
∫ π/4

0
cos (tθ)

√
2 cos (2θ) dθ,

for t = 4k + 3, k is a non-negative integer; it is equal to 0, otherwise.
Note that∫ π/4

0
e(itθ)

√
2 cos (2θ) dθ =

∫ π/4

0
(π/4 − t)−1/2(π/4 − t)1/2

√
2 cos (2θ) e(itθ) dθ.

Applying lemma 5.1 to the above integral, with λ = 1, µ = 1
2 , and φ(θ) = (

π
4 −

θ
) 1

2
√

2 cos (2θ), we get∫ π/4

0
cos (tθ)

√
2 cos (2θ) dθ = −2�(3/2) eiπ(t+1)/4t−3/2 + O(t−2),
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as t → ∞. Therefore, we have

A(t) = 2
√

2√
π

t−
3
2 + O(t−2),

as t → ∞, for t = 4k + 3 , where k is an integer; A(t) =
√

2
2 , for t = 1 and 0, otherwise. This

implies the theorem.
Since theorem 1.7 is well known, we skip the proof.

6. Conclusion

The hitting probabilities of a classical random walk have many applications such as for solving
elliptic partial differential equations, see e.g. [7], mathematical finance, e.g. [30], and in the
area of computing. In computing, examples include solving hard problems such as estimating
the volume of a convex set [8] and approximation of the permanent [13]. For solving partial
differential equations, since the probability distribution of a quantum random walk behaves
like a wave, the hitting probabilities of a quantum random walk should be useful in solving
hyperbolic partial differential equations. In the area of computing, several results have shown
that a quantum algorithm exhibits speedup over the classical algorithm, see e.g., [13, 29].
Therefore, we expect that a quantum random walk may be useful in providing algorithms that
have speedups over those done by classical random walks. In fact, some results have shown
that a quantum random walk can do the same job and sometimes faster than the classical ones.
For examples, Shenvi et al [28] show that a quantum random walk can be used to do the same
task as Grover’s search algorithm [13] and Childs et al [5] give a quantum algorithm based on
quantum random walks for travelling through a graph with an exponential speedup over the
classical one.

A faster convergence to the hitting distribution means that a more efficient algorithm
is possible for the task. In this paper, we mainly deal with the hitting probabilities of the
hyperplane by quantum random walks on Zd . For the two-dimensional case, we obtained the
scaling limit of the hitting probabilities as the lattice spacing tends to zero. We showed that
the critical exponent for the scaling limit is 1, i.e. the natural magnitude of the hitting position
is of the order O(1) if the lattice spacing is set to be 1/n. We also showed that the rate of
convergence of the hitting probability has lower bound n−2 and upper bound n−2+ε for any
ε > 0. For a quantum random walk with a fixed starting point, we showed that the probability
of hitting times at the hyperplane decays faster than that of the classical random walk. In both
one and two dimensions, given that if it hits, the conditional expectation of hitting times is
finite, in contrast with being infinite for the classical case. In the one-dimensional case, we
also obtained an exact order of the probability distribution of the hitting time at 0. Along
the same lines, it would be interesting to investigate the properties of the hitting distributions
and the rate of convergence for other types of domains for quantum random walks on general
graphs.

Another interesting question is about the decoherence of quantum random walks.
Decoherence of a quantum random walk results from the interaction between a quantum
random walk and its environment. A decoherence random walk should behave like its classical
counterpart. For example, if a classical random walk is ergodic then the corresponding quantum
random walk with a small effect of decoherence should be also ergodic. If a classical random
walk on a regular lattice is diffusive, then the corresponding quantum random walk with even
a very small decoherence should be also diffusive. Therefore we expect that a decoherence
quantum random walk will provide a useful tool for simulating the limiting distribution for
the classical analogue, but with faster convergence to the limiting distribution.
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In [17], a computer simulation shows that the behaviour of a decoherent quantum random
walk in Z1 is diffusive, i.e. the variance at time t is of the order O(t). An interesting problem
is to prove that the limiting distribution of the decoherence random walk is normal as t → ∞
and estimate the rate of convergence. The idea of our path integral formula is applicable to the
decoherence case as well. It seems that this type of path integral formula will be an analytical
tool and provide an insight to the problem.
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Appendix A

Proof of theorem 3.1. We shall prove by induction. Let n = 1.
(a) By definition,

ρ(s + h) − ρ(s)

h
=
∫ ∞

0

1

h
[e−(s+h)t − e−st ] dµ(t).

Since 1
h

[e−(s+h)t − e−st ] → −t est as h → 0 and
∣∣ 1
h

[e−(s+h)t − e−st ]
∣∣ � t which is integrable

with respect to µ, (a) follows by the dominated convergence theorem.
(b) We have∫ ∞

0
t dµ(t) =

∫ ∞

0
lim inf

s↓0

1

s
[1 − e−st ] dµ(t).

By Fatou’s lemma, the above

� lim inf
s↓0

∫ ∞

0

1

s
[1 − e−st ] dµ(t) = lim inf

s↓0
(−1)

ρ(s) − ρ(0)

s
= (−1)

dρ(s)

ds
|s=0 < ∞.

Now assume that both statements (a) and (b) hold for n − 1. Assume that
∫∞

0 tn dµ(t) <

∞. By (a) for n − 1,

ρ(n−1)(s + h) − ρ(n−1)(s)

h
=
∫ ∞

0
tn−1 1

h
[e−(s+h)t − e−st ] dµ(t).

The absolute value of the above integrand is bounded by tn which is integrable, (a) follows by
the dominated convergence theorem with h → 0.

(b) Assume that (−1)n
dnρ(s)

dsn

∣∣
0 exists. Then (−1)n−1 dn−1ρ(s)

dsn−1

∣∣
0 exists. By (b) with

n − 1,
∫∞

0 tn−1 dµ(t) < ∞. By (a) with n − 1,

(−1)n−1 dn−1ρ(s)

dsn−1
=
∫ ∞

0
tn−1 e−st dµ(t)

for all s. If
∫∞

0 tn−1 dµ(t) = 0, then µ is supported at 0 and (b) holds for all n. Suppose∫∞
0 tn−1 dµ(t) > 0. Let ν be the probability measure defined by

ν(t) = tn−1 dµ(t)∫∞
0 tn−1 dµ(t)
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and

φ(s) =
∫∞

0 tn−1 e−st dµ(t)∫∞
0 tn−1 dµ(t)

be the Laplace transform of ν. Since (−1)n
dnρ(s)

dsn

∣∣
0 exists, φ is differentiable at 0. By (b) with

n = 1,
∫∞

0 t dν(t) < ∞. Therefore,
∫∞

0 tn dµ(t) < ∞. End of proof of theorem 3.1. �

Appendix B

Proposition B.1. Let R(z) be given by (4.2). A branch of R(z) can be chosen such that R(z)

is analytic in |z| < 1, relatively continuous in |z| � 1 and R(0) = 1.

Proof. Let Rφ(z) = √
r e

iθ
2 for z = r eiθ , φ − 2π < θ � φ. Then we have the

following properties: (a) x = ±Rφ(c) is the solution to x2 = c, (b) Rφ(z) is analytic in
{z| arg z �= φ + 2kπ}\{0}, (c) R′

φ(z) = 1
2Rφ(z)

, (d) R2
φ(z) = z, (e) |Rφ(z)| = √|z|.

Note that R2(z) = K , where

K = (−1 + z2)2[1 + z2 + z4 + 2(z + z3) cos k + z2 cos2 k].

For every k,K(k, z) is a polynomial in z of order 8. By factoring K(k, z), we get

K(k, z) = (z + 1)2(z − 1)2(z − eiθ1)(z − e−iθ1)(z − eiθ2)(z − e−iθ2),

where θ1 = arccos 1−cos k
2 , θ2 = arccos −1−cos k

2 . Therefore all the zeros of K(k, z) are on the
unit circle, for every k.

Now, for K(k, z), we write the roots of K as {eiθj }, θj = θj (k), such that
∑8

j=1 θj = 0.
For each j , set hθj

(z) = Rπ+θj
(eiθj − z). We then have the following properties: (1) hθj

(z)

is analytic except {z; |z| � 1, arg z = θj }; (2) hθj
(z) is analytic in {z; |z| < 1} and relatively

continuous in |z| � 1; (3) hθj
(0) = e

iθj
2 . If we define R(z) = ∏8

j=1 hθj
, then R2(z) = K and

R(0) = 1. Therefore, R(z) is the desired branch. �
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